Use of a pH-Stat Strategy During Retrograde Cerebral Perfusion Improves Cerebral Perfusion and Tissue Oxygenation
BACKGROUND: Although it is well documented that the use of a pH-stat strategy during hypothermic cardiopulmonary bypass improves cerebral blood flow, an alpha-stat strategy has been almost exclusively used during retrograde cerebral perfusion. We investigated the effects of pH-stat and alpha-stat management on brain tissue blood flow and oxygenation during retrograde cerebral perfusion in a porcine model to determine if the use of a pH-stat strategy during retrograde cerebral perfusion improves brain tissue perfusion.
METHODS: Fourteen pigs were managed by an -stat strategy (alpha-stat group, n = 7) or by a pH-stat strategy (pH-stat group, n = 7) during 120 minutes of hypothermic retrograde cerebral perfusion. Retrograde cerebral perfusion was established through the superior vena cava. Brain tissue blood flow and oxygenation were measured continuously with a laser flowmeter and near infrared spectroscopy, respectively. Brain tissue water content was determined at the end of the experiments.
RESULTS: During cooling, brain tissue blood flow was significantly higher with use of the pH-stat strategy than with the -stat strategy (86% ± 10% versus 40% ± 3% of baseline). During retrograde cerebral perfusion, brain tissue blood flow was also significantly higher (about three times higher) in the pH-stat group than in the alpha-stat group (15% ± 4% versus 5% ± 1% of baseline at 60 minutes of retrograde cerebral perfusion). Tissue oxygen saturation appeared to be higher during retrograde cerebral perfusion in the pH-stat group than in the alpha-stat group. Brain tissue blood flow during rewarming remained significantly higher with the use of pH-stat than with the use of alpha-stat. Brain tissue water contents were similar in both groups.
CONCLUSIONS: In our pig model, the use of a pH-stat strategy during retrograde cerebral perfusion significantly improves brain tissue perfusion. Therefore, to improve retrograde cerebral blood flow during retrograde cerebral perfusion, it may be preferable to use a pH-stat strategy, rather than an alpha-stat strategy.