Influence of Platelet-Rich Plasma (PRP) on Osteogenic Differentiation of Rat Bone Marrow Stromal Cells. An In Vitro Study
Study Results: Recent clinical reports suggest that the application of an autologous blood plasma enriched with thrombocytes by centrifugal concentration (platelet-rich plasma: PRP) can enhance the formation of new bone. There are very fewin vitro or in vivo studies published on the efficiency of PRP. In this project a three dimensional cell culture system was used to compare PRP and rhBMP-2 in vitro. Marrow derived bone forming cells from Spraque-Dawley (SD) rats were seeded on porous collagenous carriers (d=5mm, h=3mm) at a density of 4 x 10(4) cells/carrier and exposed to different concentrations of PRP (platelet counts from 2.5 x 10(8)-1.6 x 10(7) platelets/culture), rhBMP-2 (300 ng) or plasma poor in thrombocytes (platelet-poor plasma, PPP). Cultures without additional supplements were used as controls. During a culture period of 21 days cell proliferation, alkaline phosphatase activity (ALP) and calcium content (days 18, 21) were measured in 3 day intervals.PRP showed a dose dependent stimulation of cell proliferation, while reducing ALP activity and calcium deposition in the culture. BMP-2 led to an opposite cell response and induced the highest ALP activity and mineral deposition. These data suggest that PRP inhibited osteogenic differentiation of marrow derived pre-osteoblasts in a dose dependent manner. PRP is not a substitute for BMP-2 in osteogenic induction.