Evaluation of Blood Components Exposed to Coated Arterial Filters in Extracorporeal Circuits
Background: Biocompatible surfaces play an important role in the inflammatory response during cardiopulmonary bypass (CBP), with the arterial filter contributing a large surface area of the circuit. Different filter-coating materials designed to improve blood-filter biocompatibility are currently used in CPB circuits. This study evaluates eight biocompatible coatings used for arterial filters and their effects on blood components during circulation.
Methods: Arterial filters were randomly assigned in eight independent heparin-bonded tubing loops and perfused by a single swine (n=8). Arterial blood was routed simultaneously, but separately, into each circuit and circulated for 30 minutes at 37 degrees C. Blood samples were drawn for CBC, ACT, and TAT III measurements at baseline, post-heparinization and post-circulation. At study completion, filters were imaged using multiphoton microscopy.
Results: RBC, platelet, and WBC counts, and TAT III complex were all decreased after 30 minutes of circulation; however, WBC count was the only parameter that showed statistically significant differences between the filters. Circulating WBC reduction ranged from 6% (Carmeda and Trillium) to 41% (Terumo-X-coating) with corresponding microscopic confirmation of increased WBC entrapment.
Conclusion: All eight filter coatings altered the blood components to varying degrees. Selection of the most effective filter, in conjunction with a heparin-bonded circuit for CPB, may decrease the intraoperative foreign-surface activation of blood cells.