World's Largest Resource for Cardiovascular Perfusion

Perfusion NewswireMain ZoneProcessing of Stored Packed Red Blood Cells Using Autotransfusion Devices Decreases Potassium and Microaggregates: A Prospective, Randomized, Single-Blinded in Vitro Study

Processing of Stored Packed Red Blood Cells Using Autotransfusion Devices Decreases Potassium and Microaggregates: A Prospective, Randomized, Single-Blinded in Vitro Study

Background: The aim of the study was to compare the potential of autotransfusion devices to reduce non-infectious complications related to transfusion of long-stored packed red blood cells (PRBC; n= 57), such as changes in electrolytes, blood cells and the load of free microaggregates.


Methods: Following a baseline measurement, a blood pool of three PRBC was divided into three equal volumes and washed with either the Haemonetics Cell Saver (HCS) or the continuous autotransfusion system (C.A.T.S), using the quality (CATS(quality)) and emergency (CATS(emergency)) mode. After the washing procedure, measurements for electrolytes, blood cells and free microaggregates were repeated (n= 19 each).


Results: Compared with baseline, the investigated autotransfusion devices reduced the median load of potassium (baseline: 52 mEq L(-1); HCS: 4 mEq L(-1); CATS(quality): 4 mEq L(-1); CATS(emergency): 17 mEq L(-1); each P < 0.001), restored a physiologic electrolyte balance and significantly decreased the load of leucocytes, glucose and protein. Whereas the quantity of microaggregates was not reduced by HCS, CATS(emergency) decreased the load of cell fragments below 7.8 microm (P < 0.05 vs. baseline). Using CATS(quality) decreased the load of cell fragments not only to a diameter below 7.8 microm (P < 0.001 vs. baseline) but also of microaggregates between 7.8 and 17.6 microm (P < 0.05 vs. baseline).


Conclusion: In situations where long-stored PRBC have to be transfused, the procedure described here may be feasible to reduce clinically relevant side effects, i.e. hyperkalaemia and microvascular obstruction secondary to free cell fragments. This approach could be especially useful in patients undergoing massive transfusion and/or suffering from renal failure.


Leave a Reply