World's Largest Resource for Cardiovascular Perfusion

Perfusion NewswireMain ZoneExtracorporeal Carbon Dioxide Removal Through Ventilation of Acidified Dialysate: An Experimental Study

Extracorporeal Carbon Dioxide Removal Through Ventilation of Acidified Dialysate: An Experimental Study

BACKGROUND:

Extracorporeal (EC) carbon dioxide (CO(2)) removal (ECCO(2)R) may be a powerful alternative to ventilation, possibly avoiding the need for mechanical ventilation and endotracheal intubation. We previously reported how an infusion of lactic acid before a membrane lung (ML) effectively enhances ECCO(2)R. We evaluated an innovative ECCO(2)R technique based on ventilation of acidified dialysate.

METHODS:

Four swine were sedated, mechanically ventilated, and connected to a venovenous dialysis circuit (blood flow, 250 ml/min). The dialysate was recirculated in a closed loop circuit including a ML (gas flow, 10 liters/min) and then returned to the dialyzer. In each animal, 4 different dialysisflows (DF) of 200, 400, 600, and 800 ml/min were evaluated with and without lactic acid infusion (2.5 mEq/min); the sequence was completed 3 times. At the end of each step, we measured the volume of CO(2)R by the ML (V(co2)ML) and collected blood and dialysate samples for gas analyses.

RESULTS:

Acid infusion substantially increased V(co2)ML, from 33 ± 6 ml/min to 86 ± 7 ml/min. Different DFs had little effect on V(co2)ML, which was only slightly reduced at DF 200 ml/min. The partial pressure of CO(2) of blood passing through the dialysis filter changed from 60.9 ± 3.6 to 37.1 ± 4.8 mm Hg without acidification and to 32.5 ± 5.3 mm Hg with acidification, corresponding to a pH increase of 0.18 ± 0.03 and 0.03 ± 0.04 units, respectively.

CONCLUSIONS:

Ventilation of acidified dialysate efficiently increased ECCO(2)R of an amount corresponding to 35% to 45% of the total CO(2) production of an adult man from a blood flow as low as 250 ml/min.


Leave a Reply