Effect of Air Exposure and Suction on Blood Cell Activation and Hemolysis in an In Vitro Cardiotomy Suction Model
Cardiopulmonary bypass (CPB) elicits a systemic inflammatory response. The cause may include surface-induced leukocyte activation and hemolysis. A study was designed to describe the effects of both suction and an air-blood interface independently and in combination on leukocyte and platelet activation, and hemolysis in an in vitro model. Fresh human blood was drawn and tested in four different conditions including control (A), 10 minutes of -600 mm Hg suction (B), 10 minutes of blood exposure to room air at 100 ml/min (C), and 10 minutes of simultaneous suction and air flow (D). Samples were analyzed by flow cytometry (platelets and leukocytes) and plasma-free hemoglobin (PFHb). Leukocyte CD11b expression and platelet P-selectin (CD62P) were analyzed by flow cytometry. In comparison with baseline, granulocytes were significantly activated by air (group C, p = 0.0029) and combination (group D, p = 0.0123) but not by suction alone (group B). Monocytes and platelets were not significantly activated in any group. The PFHb increased significantly in group C (p < 0.001) and group D (p < 0.001). This study suggests that the inflammatory response and associated hemolysis during CPB may be related to air exposure, which could be reduced by minimizing the air exposure of air to blood during cardiotomy suction.