Platelet Rich Plasma (PRP) Enhances Anabolic Gene Expression Patterns in Flexor Digitorum Superficialis Tendons
Background: Platelet rich plasma (PRP) has recently been investigated for use in tissue regeneration studies that seek to utilize the numerous growth factors released from platelet alpha-granules. This study examined gene expression patterns, DNA, and collagen content of equine flexor digitorum superficialis tendon (SDFT) explants cultured in media consisting of PRP and other blood products.
Methods: Blood and bone marrow aspirate (BMA) were collected from horses and processed to obtain plasma, PRP, and platelet poor plasma (PPP). IGF-I, TGF-beta1, and PDGF-BB were quantified in all blood products using ELISA. Tendons were cultured in explant fashion with blood, plasma, PRP, PPP, or BMA at concentrations of 100%, 50%, or 10% in serum-free DMEM with amino acids. Quantitative RT-PCR for expression of collagen type I (COL1A1), collagen type III (COL3A1), cartilage oligomeric matrix protein (COMP), decorin, matrix metalloproteinase-3 (MMP-3), and matrix metalloproteinase-13 (MMP-13) was performed as were as DNA and total soluble collagen assays.
Results & Conclusion: TGF-beta1 and PDGF-BB concentrations were higher in PRP compared to all other blood products tested. Tendons cultured in 100% PRP showed enhanced gene expression of the matrix molecules COL1A1, COL3A1, and COMP with no concomitant increase in the catabolic molecules MMP-3 and MMP-13. These findings support in vivo investigation of PRP as an autogenous, patient-side treatment for tendonitis.